立即注册 找回密码

168资源分享社区

查看: 9744|回复: 0

初三数学作业

  [复制链接]
发表于 2020-3-29 21:50:00 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
初三数学
124502q84qbc4c48o4ueg4.jpg
<现在开始正题了哦,认真仔细看下面正文文章> 1.(2014攀枝)如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.
(1)求B、C两点的坐标;
(2)请在图中出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;
(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化。若不变,求出∠MQG的度数;若变化,请说明理由.             2.(2014苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)

(1)如图①,连接OA、AC,则∠OAC的度数为 _________ °;

(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);

(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).
                     3.(2014泰州)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.  

(1)若直线AB与有两个交点F、G.
①求∠CFE的度数; ②用含b的代数式表示FG,并直接写出b的取值范围;

(2)设b≥5,在线段AB上是否存在点P,使∠CPE=45°。
若存在,请求出P点坐标;若不存在,请说明理由.                  4.(2014上海)如图1,已知在平行四边形ABCD中,AB=5,BC=8,cosB=,点P是边BC上的动点,以CP为半径的圆C与边AD交于点E、F(点F在点E的右侧),射线CE与射线BA交于点G. 2

(1)当圆C经过点A时,求CP的长;

(2)连接AP,当AP∥CG时,求弦EF的长;

(3)当△AGE是等腰三角形时,求圆C的半径长.            
   5.(2014常州)在平面直角坐标系xOy中,点M(,),以点M为圆心,OM长为半径作⊙M.使⊙M与直线OM的另一交点为点B,与x轴,y轴的另一交点分别为点D,A(如图),连接AM.点P是上的动点.

(1)写出∠AMB的度数;

(2)点Q在射线OP上,且OPOQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E. ①当动点P与点B重合时,求点E的坐标; ②连接QD,设点Q的纵坐标为t,△QOD的面积为S.求S与t的函数关系式及S的取值范围.           6.(2014漳州)阅读材料:如图1,在△AOB中,∠O=90°,OA=OB,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF=OA.(此结论不必证明,可直接应用)  

(1)
【理解与应用】 如图2,正方形ABCD的边长为2,对角线AC,BD相交于点O,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF的值为 _________ .


(2)
【类比与推理】 如图3,矩形ABCD的对角线AC,BD相交于点O,AB=4,AD=3,点P在AB边上,PE∥OB交AC于点E,PF∥OA交BD于点F,求PE+PF的值;

(3)
【拓展与延伸】 如图4,⊙O的半径为4,A,B,C,D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF是否为定值。若是,请求出这个定值;若不是,请说明理由.                            7.(2014云南)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCO是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.

(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);

(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M。
若存在,请求出点M的坐标;若不存在,请说明理由;

(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、
F.请探求在动圆P中是否存在面积最小的四边形DEPF。若存在,请求出最小面积S的值;若不存在,请说明理由.                             8.(2014湖州)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0).


(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;

(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;

(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似。若存在,请直接写出t的值;若不存在,请说明理由.               9.(2014陕西)问题探究

(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;

(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长; 问题解决

(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°。若存在,请求出符合条件的DM的长,若不存在,请说明理由.   
         10.(2014成都)如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是点F,连接PC与PD,PD交AB于点G.

(1)求证:△PAC∽△PDF;

(2)若AB=5,=,求PD的长; =x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写上异于A,C的一个动点,射线AP交l于

(3)在点P运动过程中,设出x的取值范围)                  
          11.(2014宁波)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案: 方案一:直接锯一个半径最大的圆; 方案二:圆心O

1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆; 方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆; 方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.

(1)写出方案一中圆的半径;

(2)通过计算说明方案二和方案三中,哪个圆的半径较大。

(3)在方案四中,设CE=x(0<x<1),圆的半径为y. ①求y关于x的函数解析式; ②当x取何值时圆的半径最大,最大半径为多少。并说明四种方案中哪一个圆形桌面的半径最大.            
                  12.(2014徐州)如图,矩形ABCD的边AB=3cm,AD=4cm,点E从点A出发,沿射线AD移动,以CE为直径作圆O,点F为圆O与射线BD的公共点,连接EF、CF,过点E作EG⊥EF,EG与圆O相交于点G,连接CG.

(1)试说明四边形EFCG是矩形;

(2)当圆O与射线BD相切时,点E停止移动,在点E移动的过程中, ①矩形EFCG的面积是否存在最大值或最小值。若存在,求出这个最大值或最小值;若不存在,说明理由; ②求点G移动路线的长.               
13.(2014东昌府区三模)已知:如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.

(1)求证:AC与⊙O相切;

(2)当BD=6,sinC=时,求⊙O的半径.              14.(2014安徽模拟)阅读材料:如图,△ABC中,AB=AC,P为底边BC上任意一点,点P到两腰的距离分别为r1,r2,腰上的高为h,连接AP,则S△ABP+S△ACP=S△ABC,即:ABr1+ACr2=ABh,∴r1+r2=h

(1)理解与应用 如果把“等腰三角形”改成“等边三角形”,那么P的位置可以由“在底边上任一点”放宽为“在    三角形内任一点”,即:已知边长为2的等边△ABC内任意一点P到各边的距离分别为r1,r2,r3,试证明:.

(2)类比与推理 边长为2的正方形内任意一点到各边的距离的和等于 _________ ;

(3)拓展与延伸 若边长为2的正n边形A1A2…An内部任意一点P到各边的距离为r1,r2,…rn,请问r1+r2+…rn是否为定值(用含n的式子表示),如果是,请合理猜测出这个定值.
                  15.(2014安徽名校一模)如图△ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线.      16.(2014灌南县模拟)如图,AB是⊙O的直径,AC是弦,∠ACD=∠AOC,AD⊥CD于点D.

(1)求证:CD是⊙O的切线;

(2)若AB=10,AD=2,求AC的长.
          17.(2014普陀区二模)如图,在等腰△ABC中,AB=AC=5,BC=6,点D为BC边上一动点(不与点B重合),过D作射线DE交AB边于E,使∠BDE=∠A,以D为圆心、DC的长为半径作⊙D.

(1)设BD=x,AE=y,求y关于x的函数关系式,并写出定义域.

(2)当⊙D与AB边相切时,求BD的长.

(3)如果⊙E是以E为圆心,AE的长为半径的圆,那么当BD的长为多少时,⊙D与⊙E相切。                  
   18.(2014江西模拟)如图,矩形ABCD的边AB=4,BC=3.一简易量角器放置在矩形ABCD内,其零度线即半圆O的直径与边AB重合,点A处是0刻度,点B处是180刻度.P点是量角器的半圆弧上一动点,过P点的切线与边BC、CD(或其延长线)分别交于点E、F.设点P的刻度数为n,∠PAB=α.

(1)当n=136时,α= _________ ,求出α与n的关系式;

(2)在P点的运动过程中,线段EB与EP有怎样的数量关系,请予证明;

(3)在P点的运动过程中,F点在直线CD上的位置随着α的变化而变化,当F点在线段CD上时、在CD的延长线上时、在DC的延长线上时,对应的α值分别是多少。
(参考数据:tan56.3°≈1.5)

(4)连接BP,在P点的运动过程中,是否存在△ABP与△CEF相似的情况。若存在,求出此时n的值以及相应的EF的长;若不存在,请说明理由.                        
        19.(2014广东一模)如图,正方形ABCD的边长是8cm,以正方形的中心O为圆心,EF为直径的半圆切AB于M、切BC于N,已知C为BG的中点,AG交CD于H.P,Q同时从A出发,P以1cm/s的速度沿折线ADCG运动,Q以cm/s的速速沿线段AG方向运动,P,Q中有一点到达终点时,整个运动停止.P,Q运动的时间记为t.

(1)当t=4时,求证:△PEF≌△MEF;

(2)当0≤t≤8时,试判断PQ与CD的位置关系;

(3)当t>8时,是否存在t使得请说明理由. =。若存在请求出所有t的值,若不存在,             20.(2013营口)如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D.

(1)求证:AC平分∠BAD;

(2)若CD=1,AC=,求⊙O的半径长.
            21.(2013襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.

(1)求证:DP∥AB;

(2)若AC=6,BC=8,求线段PD的长.                 
22.(2013曲靖)如图,⊙O的直径AB=10,C、D是圆上的两点,且点D的切线ED交AC的延长线于点F.连接OC交AD于点G.

(1)求证:DF⊥AF.

(2)求OG的长. .设过            23.(2013德阳)如图,已知AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C作⊙O的切线与ED的延长线交于点P.

(1)求证:PC=PG;

(2)点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点,试探究CG、BF、BO三者之间的数量关系,并写出证明过程;

(3)在满足

(2)的条件下,已知⊙O的半径为5,若点O到BC的距离为时,求弦ED的长.        
    24.(2013贺州)已知:⊙O的直径为3,线段AC=4,直线AC和PM分别与⊙O相切于点A,M.

(1)求证:点P是线段AC的中点;

(2)求sin∠PMC的值.      25.(2013兰州)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.

(1)求证:DE是⊙O的切线;

(2)若DE=6cm,AE=3cm,求⊙O的半径.         26.(2013南宁)如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F,连接AF,AF的延长线交DE于点P.

(1)求证:DE是⊙O的切线;

(2)求tan∠ABE的值;

(3)若OA=2,求线段AP的长.
        27.(2013长沙)如图,△ABC中,以AB为直径的⊙O交AC于点D,∠DBC=∠BAC.

(1)求证:BC是⊙O的切线;

(2)若⊙O的半径为2,∠BAC=30°,求图中阴影部分的面积.               28.(2013广安)如图,在△ABC中,AB=AC,以AB为直径作半圆⊙O,交BC于点D,连接AD,过点D作DE⊥AC,垂足为点E,交AB的延长线于点F.

(1)求证:EF是⊙0的切线.

(2)如果⊙0的半径为5,sin∠ADE=,求BF的长.
          29.(2013沈阳)如图,OC平分∠MON,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM相切于点B,连接BA并延长交⊙A于点D,交ON于点E.

(1)求证:ON是⊙A的切线;

(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)                    
30.(2013宜宾)如图,AB是⊙O的直径,∠B=∠CAD.

(1)求证:AC是⊙O的切线;

(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.   

初三数学
。                     《初三数学作业.电脑版点击下载文档可以下载此文章》

https://www.16848.cn
168中文社区免费提供早教启蒙教育资料小学学习资料,中学作文教程,中学作文范文,中学作文写作技巧,中学学习资料,高中学习资料,人教版电子课本,外研版英语电子课本,人教版语文,人教版数学,人教版英语,,人教版物理动画片下载,小学作文教程,小学作文范文,小学作文写作技巧,电视剧资源,减肥瘦身食谱大全,主食配方,健康养生知识,孕产妇知识,天下美食菜谱大全,原创文学,宠物,美图欣赏,图文音画等各种免费网络教程资源,本站资源全部来自网友发布,如果侵犯了您的权益,请联系资源分享站长,本站会及时删除侵权内容!资源分享社区
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|168资源分享社区

JS of wanmeiff.com and vcpic.com Please keep this copyright information, respect of, thank you!JS of wanmeiff.com and vcpic.com Please keep this copyright information, respect of, thank you!

GMT+8, 2020-10-2 07:05 , Processed in 1.783493 second(s), 57 queries .

Powered by Discuz! X3.4 © 2001-2013 Comsenz Inc & 168社区

快速回复 返回顶部 返回列表