立即注册 找回密码

168资源分享社区

查看: 9741|回复: 0

2019-2020年八年级上册期末数学试卷(有答案)

  [复制链接]
发表于 2020-3-13 00:28:00 | 显示全部楼层 |阅读模式

马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。

您需要 登录 才可以下载或查看,没有帐号?立即注册

x
八年级上册数学试卷
123226xqz38eemaetemeuu.jpg
<现在开始正题了哦,认真仔细看下面正文文章> 八年级(上)期末数学试卷   一、选择题(以下每题只有一个正确的选项,每小题3分,共30分)  1.(3分)下列图标是节水、节能、低碳和绿色食品的标志,其中是轴对称图形的是(  )A. B. C. D. 2.(3分)下列二次根式中,最简二次根式的是(  ) A. B. C. D. 3.(3分)点M(﹣2,1)关于y轴的对称点N的坐标是(  ) A.(2,1) B.(1,﹣2) C.(﹣2,﹣1) 4.(3分)下列运算中正确的是(  ) A.b3b3=2b3 B.23=6 C.(a5)2=a7 D.a5÷a2=a3 D.(2,﹣1) 5.(3分)下列各式中,从左到右的变形是因式分解的是(  ) A.3+3y﹣5=3(+y)﹣5 B.(+1)(﹣1)=2﹣1 C.42+4=4(+1) D.67=3225 6.(3分)分式方程A.1 B.2 C.3 +D.4 =1的解是(  )  7.(3分)等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的底边为(  )A.5cm B.4cm C.5cm或3cm D.8cm 8.(3分)若m+=5,则m2+A.23 B.8 C.3 D.7 的结果是(  ) 9.(3分)如图,三角形纸片ABC中,∠A=75°,∠B=60°,将纸片的角折叠,使点C落在△ABC内,若∠α=35°,则∠β等于(  )  " J# J! Z. {* B, |7 H
A.48° B.55° C.65° D.以上都不对 10.(3分)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是100,小正方形的面积为20,那么每个直角三角形的周长为(  )  A.10+6   B.10+10C.10+4D.24 二、填空题(每小题3分,共24分) 11.(3分)若分式的值为零,则的值等于     . 12.(3分)已知a+b=2,则a2﹣b2+4b的值为     . 13.(3分)若+|3﹣y|=0,则y=     . 14.(3分)2++9是完全平方式,则=     . 15.(3分)如图,△ABC中,AB=AC,AB的垂直平分线交AC 于P点,若AB=6cm,BC=4cm,△PBC 的周长等于     cm.   16.(3分)如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是:     三角形. 17.(3分)如图,从点A(0,2)发出一束光,经轴反射,过点B(4,3),则这束光从点A到点B所经过的路径的长为     . 5 J$ s1 U4 O0 P( B- A/ X# o
18.(3分)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程: 已知:直线l和l外一点P.(如图1) 求作:直线l的垂线,使它经过点P. 作法:如图2 . n7 d6 U# I9 W6 q+ |' E2 A
(1)在直线l上任取两点A,B; ! a7 K" g/ K9 Z/ N% r
(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;
+ M$ e: @# `4 R& N/ b) D5 T2 {(3)作直线PQ. 所以直线PQ就是所求的垂线. 请回答:该作图的依据是     .    三、解答题(第
; P& I. [1 N: t" N  Z9 a19、20题每小题3分,第21-28题每小题3分,共46分) 19.(3分)因式分解:3ab2+6ab+3a. 20.(3分)计算:(a+b)(a﹣b)﹣(a﹣b)2. 21.(5分)计算:22.(5分)解方程: +|﹣ +|+()﹣3+(π﹣3.14)0. =+. )÷,其中=12. ,求BC的长. 23.(5分)先化简,再求值:(24.(5分)如图,在△ABC中,∠B=60°,AC=15,AB=61 k/ l4 c' e: l* E3 W0 \
25.(5分)北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度. 26.(5分)已知:如图,在△ABC中,∠C=90°,AE是△ABC的角平分线;ED平分∠AEB,交AB于点D;∠CAE=∠B.
! [3 c8 b. W8 P- U(1)求∠B的度数. $ W- l  p* C9 n1 O# M+ N
(2)如果AC=3cm,求AB的长度.
! C: H7 u& i/ w9 G, A, z- n1 j(3)猜想:ED与AB的位置关系,并证明你的猜想.  27.(5分)阅读下列材料,并回答问题. 事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:  2 R2 P! Y+ m# j- e2 ^! Z) T) s  ?9 ^
(1)一个直角三角形的两条直角边分别为
$ @" I3 ]  z( K; ^6、8,那么这个直角三角形斜边长为     . + p# d) F4 X. H
(2)如图1,AD⊥BC 于D,AD=BD,AC=BE,AC=3,DC=1,求BD的长度.
2 K+ J6 G' L4 h(3)如图2,点A在数轴上表示的数是     ,请用类似的方法在图2数轴上出表示数的B点(保留作图痕迹). 28.(5分)如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”5 A. Y- N+ |6 u
特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,BD=CD=AB.于是可得出结论“直角三角形中, 30°角所对的直角边等于斜边的一半”.  请根据从上面材料中所得到的信息解答下列问题:
: C+ h9 v# N# K% m. a(1)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长=     .
9 a% v, i3 u% r$ F  h& s& F(2)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那么BE:EA=     .
, l: ?9 o& `% e) c(3)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且AE=DC,AD、BE交于点P,作BQ⊥AD于Q,若BP=2,求BQ的长.   2 D0 m  E, l: {) u
八年级(上)期末数学试卷 参考答案与试题解析   一、选择题(以下每题只有一个正确的选项,每小题3分,共30分)  1.(3分)下列图标是节水、节能、低碳和绿色食品的标志,其中是轴对称图形的是(  )A. B. C. D. 【解答】解:A、不是轴对称图形,故本选项错误; B、不是轴对称图形,故本选项错误; C、不是轴对称图形,故本选项错误; D、是轴对称图形,故本选项正确. 故选:D.   2.(3分)下列二次根式中,最简二次根式的是(  ) A. B. C. D. 【解答】解:A、B、C、D、中被开方数是分数,故不是最简二次根式; 中被开方数是分数,故不是最简二次根式; 中被开方数不含分母,不含能开得尽方的因数,故是最简二次根式; 中含能开得尽方的因数,故不是最简二次根式; 故选:C.   3.(3分)点M(﹣2,1)关于y轴的对称点N的坐标是(  ) A.(2,1) B.(1,﹣2) C.(﹣2,﹣1) D.(2,﹣1) 【解答】解:点M(﹣2,1)关于y轴的对称点N的坐标是(2,1). 故选:A.   4.(3分)下列运算中正确的是(  ) $ J& ]0 N8 l# z: u! t, i
A.b3b3=2b3 B.23=6 C.(a5)2=a7 D.a5÷a2=a3 【解答】解:A、b3b3=b6,故A不符合题意; B、23=5,故B不符合题意; C、(a5)2=a10,故C不符合题意; D、a5÷a3=a2,故D符合题意; 故选:D.   5.(3分)下列各式中,从左到右的变形是因式分解的是(  ) A.3+3y﹣5=3(+y)﹣5 B.(+1)(﹣1)=2﹣1 C.42+4=4(+1) D.67=3225 【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误; B、是整式的乘法,不是因式分解,故本选项错误; C、42+4=4(+1),是因式分解,故本选项正确; D、67=3225,不是因式分解,故本选项错误. 故选:C.   6.(3分)分式方程A.1 B.2 C.3 +D.4 =1的解是(  ) 【解答】解:去分母得:2+2+6﹣12=2﹣4, 移项合并得:8=8, 解得:=1, 经检验=1是分式方程的解, 故选:A.    7.(3分)等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的底边为(  )A.5cm B.4cm C.5cm或3cm D.8cm 【解答】解:当5cm是等腰三角形的底边时,则其腰长是(13﹣5)÷2=4(cm),能够组成三角形; 当5cm是等腰三角形的腰时,则其底边是13﹣5×2=3(cm),能够组成三角形. / ]: o8 b; Y& A6 a# U, ]
所以该等腰三角形的底边为5cm或3cm, 故选:C.   8.(3分)若m+=5,则m2+A.23 B.8 C.3 D.7 的结果是(  ) 【解答】解:∵m+=5, ∴m2+=(m+)2﹣2=25﹣2=23, 故选:A.   9.(3分)如图,三角形纸片ABC中,∠A=75°,∠B=60°,将纸片的角折叠,使点C落在△ABC内,若∠α=35°,则∠β等于(  )  A.48° B.55° C.65° D.以上都不对 【解答】解:∠α+∠β+(180°﹣∠C)+∠A+∠B=360°, 整理可得∠β=55°. 故选:B.   10.(3分)2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的弦图,它是由四个全等的直角三角形和中间的小正方形拼成的大正方形,如图所示,如果大正方形的面积是100,小正方形的面积为20,那么每个直角三角形的周长为(  )  A.10+6 B.10+10C.10+4D.24
: V6 V3 g+ X, U6 Q4 D【解答】解:根据题意得:c2=a2+b2=100,4×ab=100﹣20=80,即2ab=80, 则(a+b)2=a2+2ab+b2=100+80=180, ∴每个直角三角形的周长为10+故选:A.   二、填空题(每小题3分,共24分) 11.(3分)若分式的值为零,则的值等于 2 . =10+ 【解答】解:根据题意得:﹣2=0, 解得:=2. 此时2+1=5,符合题意, 故答案是:2.   12.(3分)已知a+b=2,则a2﹣b2+4b的值为 4 . 【解答】解:∵a+b=2, ∴a2﹣b2+4b, =(a+b)(a﹣b)+4b, =2(a﹣b)+4b, =2a+2b, =2(a+b), =2×2, =4. 故答案为:4.   13.(3分)若+|3﹣y|=0,则y= 6 . 【解答】解:由题意得,﹣2=0,3﹣y=0, 解得=2,y=3, 所以,y=2×3=6. 故答案为:6.   ' H* L7 D3 w! A- E2 @
14.(3分)2++9是完全平方式,则= ±6 . 【解答】解:中间一项为加上或减去和3的积的2倍, 故=±6.   15.(3分)如图,△ABC中,AB=AC,AB的垂直平分线交AC 于P点,若AB=6cm,BC=4cm,△PBC 的周长等于 10 cm.  【解答】解:∵△ABC中,AB=AC,AB=6cm, ∴AC=6cm, ∵AB的垂直平分线交AC于P点, ∴BP+PC=AC, ∴△PBC的周长=(BP+PC)+BC=AC+BC=6+4=10cm. 故答案为:10.   16.(3分)如图,正方形网格中的△ABC,若小方格边长都为1,则△ABC是: 直角 三角形.  【解答】解:∵AC2=22+32=13,AB2=62+42=52,BC2=82+12=65, ∴AC2+AB2=BC2,∴△ABC是直角三角形.   17.(3分)如图,从点A(0,2)发出一束光,经轴反射,过点B(4,3),则这束光从点A到点B所经过的路径的长为  .
2 ~: q$ ~( o6 m  J. K/ E 【解答】解:如图,过点B作BD⊥轴于D, ∵A(0,2),B(4,3), ∴OA=2,BD=3,OD=4, 根据题意得:∠ACO=∠BCD, ∵∠AOC=∠BDC=90°, ∴△AOC∽△BDC, ∴OA:BD=OC:DC=AC:BC=2:3, ∴OC=OD=×4=, ∴AC=∴BC=∴AC+BC=, . . =, 即这束光从点A到点B所经过的路径的长为:故答案为:.    18.(3分)下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程: 已知:直线l和l外一点P.(如图1) 求作:直线l的垂线,使它经过点P. 作法:如图2 ) e2 p" z: ~( t. G: G! v
(1)在直线l上任取两点A,B;
+ [% X: k3 f8 k! [6 n* Z. {' v
: Q: E# K2 S2 y0 k+ H: U" X* [# Q(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q; 8 O4 _3 N, ?. V& G0 T( a6 R, Y
(3)作直线PQ. 所以直线PQ就是所求的垂线. 请回答:该作图的依据是 到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上) .  【解答】解:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上), 理由:如图,∵PA=AQ,PB=QB, ∴点A、点B在线段PQ的垂直平分线上, ∴直线AB垂直平分线段PQ, ∴PQ⊥AB.    三、解答题(第  t" w  b+ B8 \. j
19、20题每小题3分,第21-28题每小题3分,共46分) 19.(3分)因式分解:3ab2+6ab+3a. 【解答】解:3ab2+6ab+3a =3a(b2+2b+1) =3a(b+1)2.   20.(3分)计算:(a+b)(a﹣b)﹣(a﹣b)2. 【解答】解:原式=a2﹣b2﹣a2+2ab﹣b2=2ab﹣2b2.
7 K/ D7 X: z7 P- q) z3 {( q8 l  21.(5分)计算:【解答】解:原式=2=3  22.(5分)解方程: +=. +9.  +|﹣+|+()﹣3+(π﹣3.14)0. +8+1 【解答】解:两边都乘(+3)(﹣3),得 +3(﹣3)=+3, 解得=4, 经检验:=4是原分式方程的根.   23.(5分)先化简,再求值:(【解答】解:(=[=+, +)÷]+, , )÷,其中=12. =, =, =. 当=12时,原式=  24.(5分)如图,在△ABC中,∠B=60°,AC=15,AB=6,求BC的长.  
# p7 V' m  w' X* x2 y! ^【解答】解:作AD⊥BC于D, ∵∠B=60°, ∴∠BAD=30°, ∴BD=AB=3, =9, =12, 在Rt△ABD中,AD=在Rt△ADC中,CD=∴BC=BD+CD=3+12.    25.(5分)北京时间2015年7月31日,国际奥委会主席巴赫宣布:中国北京获得2022年第24届冬季奥林匹克运动会举办权.北京也创造历史,成为第一个既举办过夏奥会又举办冬奥会的城市,张家口也成为本届冬奥会的协办城市.近期,新建北京至张家口铁路可行性研究报告已经获得国家发改委批复,同意新建北京至张家口铁路,铁路全长约180千米.按照设计,京张高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少了20分钟,求高铁列车的平均行驶速度. 【解答】解:设普通快车的平均行驶速度为千米/时,则高铁列车的平均行驶速度为1.5千米/时. 根据题意得:解得:=180, 经检验,=80是所列分式方程的解,且符合题意. 则1.5=1.5×180=270. 答:高铁列车的平均行驶速度为270千米/时.   26.(5分)已知:如图,在△ABC中,∠C=90°,AE是△ABC的角平分线;ED平分∠AEB,交AB于点D;∠CAE=∠B. # Y" i# n4 N. ^0 T& }
(1)求∠B的度数. ﹣=, 6 F! q5 M) i8 @$ ?% k/ L2 k# i
* s' D4 L' o9 F7 v( ~2 x  Q
(2)如果AC=3cm,求AB的长度. $ h. k" f- i# y  d1 e
(3)猜想:ED与AB的位置关系,并证明你的猜想.  【解答】解:
3 o# l3 W/ U0 c0 f- h(1)∵AE是△ABC的角平分线, ∴∠CAE=∠EAB, ∵∠CAE=∠B, ∴∠CAE=∠EAB=∠B. ∵在△ABC中,∠C=90°, ∴∠CAE+∠EAB+∠B=3∠B=90°, ∴∠B=30°;  
0 H; ]. q3 T. i(2)∵在△ABC中,∠C=90°,∠B=30°,AC=3cm, ∴AB=2AC=6cm;  8 }, g: E& p$ c/ G1 T$ p
(3)猜想:ED⊥AB.理由如下: ∵∠EAB=∠B, ∴EB=EA, ∵ED平分∠AEB, ∴ED⊥AB.   27.(5分)阅读下列材料,并回答问题. 事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:  
  }- ~* B8 g1 G! @4 A+ v7 I8 o( W9 U# F8 K% a3 I% a2 @  f$ w
(1)一个直角三角形的两条直角边分别为
' z) n6 [. H9 d6、8,那么这个直角三角形斜边长为 10 .
% ]2 N1 E- W. A% \' @$ K: y. P% Y(2)如图1,AD⊥BC 于D,AD=BD,AC=BE,AC=3,DC=1,求BD的长度.
  w/ G& X) g/ N$ O" p& A(3)如图2,点A在数轴上表示的数是 ﹣的B点(保留作图痕迹). 【解答】解:
# K% N$ _4 p( N( {3 @: Q0 K1 K(1)直角三角形的两条直角边分别为
' g9 q- N; J- R) o6、8, 则这个直角三角形斜边长=故答案为:10;
% {) M  x6 ^7 {5 O$ F3 p  X(2)在Rt△ADC中,AD=∴BD=AD=2; =﹣, =2, =10,  ,请用类似的方法在图2数轴上画出表示数
  _: a% C# a! n: h& T7 z(3)点A在数轴上表示的数是:﹣由勾股定理得,OC=, 以O为圆心、OC为半径作弧交轴于B,则点B即为所求, 故答案为:﹣.    28.(5分)如图1所示,等边△ABC中,AD是BC边上的中线,根据等腰三角形的“三线合一”特性,AD平分∠BAC,且AD⊥BC,则有∠BAD=30°,BD=CD=AB.于是可得出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.  请根据从上面材料中所得到的信息解答下列问题: # C* E0 l0 G4 N9 v+ w
(1)如图2所示,在△ABC中,∠ACB=90°,BC的垂直平分线交AB于点D,垂足为E,当BD=5cm,∠B=30°时,△ACD的周长= 15cm .
$ u7 p! ?# b0 B+ J# |(2)如图3所示,在△ABC中,AB=AC,∠A=120°,D是BC的中点,DE⊥AB,垂足为E,那. f5 a' \5 M$ O: F
么BE:EA= 3:1 .
4 g( K7 y" W3 G# V* B(3)如图4所示,在等边△ABC中,D、E分别是BC、AC上的点,且AE=DC,AD、BE交于点P,作BQ⊥AD于Q,若BP=2,求BQ的长. 【解答】解:: g5 }3 ~1 M5 u
(1)∵DE是线段BC的垂直平分线,∠ACB=90°, ∴CD=BD,AD=BD. 又∵在△ABC中,∠ACB=90°,∠B=30°, ∴AC=AB, ∴△ACD的周长=AC+AB=3BD=15cm. 故答案为:15cm;
) @4 A9 w4 r6 y2 z, A2 }7 B! t0 X  c* @(2)连接AD,如图所示. ∵在△ABC中,AB=AC,∠A=120°,D是BC的中点, ∴∠BAD=60°. 又∵DE⊥AB, ∴∠B=∠ADE=30°, ∴BE=BD,EA=AD, BD: AD, AD, ∴BE:EA=又∵BD=∴BE:AE=3:1. 故答案为:3:1.
& n6 m, A7 w+ g% v7 I(3)∵△ABC为等边三角形. ∴AB=AC,∠BAC=∠ACB=60°, 在△BAE和△ACD中,∴△BAE≌△ACD(SAS), ∴∠ABE=∠CAD. ∵∠BPQ为△ABP外角, ∴∠BPQ=∠ABE+∠BAD. ∴∠BPQ=∠CAD+∠BAD=∠BAC=60° , $ Q0 f+ s/ b, b  }" z& P+ u, D
∵BQ⊥AD, ∴∠PBQ=30°, ∴BP=2PQ=2, ∴PQ=1, ∴BQ===.   
3 _$ r  q  X! m( @/ x- P+ B八年级上册数学试卷# G7 \5 ?- z: s+ S' X
。                     《2019-2020年八年级上册期末数学试卷(有答案).电脑版点击下载文档可以下载此文章》
8 O) Q0 n) b% x# V
" s2 }* g$ H" w8 `& P: |" c  @https://www.16848.cn/ z# I( w. r1 R( \4 t
168中文社区免费提供早教启蒙教育资料小学学习资料,中学作文教程,中学作文范文,中学作文写作技巧,中学学习资料,高中学习资料,人教版电子课本,外研版英语电子课本,人教版语文,人教版数学,人教版英语,,人教版物理动画片下载,小学作文教程,小学作文范文,小学作文写作技巧,电视剧资源,减肥瘦身食谱大全,主食配方,健康养生知识,孕产妇知识,天下美食菜谱大全,原创文学,宠物,美图欣赏,图文音画等各种免费网络教程资源,本站资源全部来自网友发布,如果侵犯了您的权益,请联系资源分享站长,本站会及时删除侵权内容!资源分享社区
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|168资源分享社区

JS of wanmeiff.com and vcpic.com Please keep this copyright information, respect of, thank you!JS of wanmeiff.com and vcpic.com Please keep this copyright information, respect of, thank you!

GMT+8, 2020-9-23 14:22 , Processed in 3.962797 second(s), 51 queries .

Powered by Discuz! X3.4 © 2001-2013 Comsenz Inc & 168社区

快速回复 返回顶部 返回列表